Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(1): 6, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36518183

RESUMO

In the present study, Tricholoma giganteum AGHP laccase was immobilized on amino-functionalized cadmium oxide nanoparticles (CdO NPs) which was carried out by glutaraldehyde. The synthesized CdO NPs were characterized by using transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) analysis which reflected the NPs had an average size of 35 nm with hexagonal and irregular shapes. Fourier transform infra-red (FTIR) study of laccase with amino-functionalized CdO (lac-CdO) NPs confirmed the crosslinking of laccase with CdO NPs. With immobilized laccase, a shift in pH (5.5) and temperature (35 â„ƒ) optima was observed, when compared to free laccase (pH 4.5, 30 â„ƒ). Lac-CdO NPs displayed 1.15 times higher stability (90 ± 0.47%) than free laccase (78 ± 0.69%) at optimum pH of 5.5. Immobilized laccase showed 1.19-fold improvement in thermal stability and 2.25-fold increment in half-life after 3 h of incubation at 50 â„ƒ as compared to free laccase. Recycling capability study demonstrated that lac-CdO NPs were able to retain 85 ± 0.68% of relative activity at the end of 20th 2,2-azinobis-3-ethylbenzthiozoline-6-sulfonic acid (ABTS) oxidation cycle. In addition, lac-CdO NPs showed remarkable reusability in catalysing various organic synthesis reactions even after several cycle of catalysis. Furthermore, the interactions of organic synthesis reactions and interacted residues were observed by assessing the molecular docking poses of T. giganteum laccase with substrates. The obtained results would be advantageous to develop a biocatalyst over a chemical catalyst for effective synthesis of potent organics having industrial importance.

2.
World J Microbiol Biotechnol ; 38(11): 212, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053338

RESUMO

Rice straw decomposition is an attractive solution to open-field burning but the traditional method has slow kinetics and takes 60-90 days to obtain mature compost. In this study, we propose to boost up the decomposition process by addition of a novel microbial consortium rich in lignocellulolytic microbes. C: N ratio of the compost reached 11.69% and degradation efficiency of cellulose and hemicellulose was found to be 64 and 87% respectively within 25 days. Lignocellulolytic activity of the microbial consortium was confirmed by plate and activity assay. These parameters clearly indicated that a mature compost was obtained in 25 days. The 16S rRNA gene amplicon sequencing and functional analysis of predicted genes indicated amino acid and carbohydrate metabolism as the major metabolic pathway during composting. The tertiary level of functional analysis revealed the major metabolic pathways in the bacterial communities as pentose phosphate pathway, glycolysis and tricarboxylic acid cycle.


Assuntos
Compostagem , Microbiota , Oryza , Consórcios Microbianos/genética , Oryza/microbiologia , RNA Ribossômico 16S/genética , Solo/química
3.
Bioresour Technol ; 349: 126870, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192947

RESUMO

Bioremediation systems coupled to efficient microbial enzymes have emerged as an attractive approach for the in-situ removal of hazardous organophosphates (OPs) pesticides from the polluted environment. However, the role of engineered enzymes in OPs-degradation is rarely studied. In this study, the potential OPs-hydrolase (opdH) gene (Arthrobacter sp. HM01) was isolated, cloned, expressed, and purified. The recombinant organophosphate hydrolase (ropdH) was âˆ¼29 kDa; which catalyzed a broad-range of OPs-pesticides in organic-solvent (∼99 % in 30 min), and was found to increase the catalytic efficiency by 10-folds over the native enzyme (kcat/Km: 107 M-1s-1). The degraded metabolites were analyzed using HPLC/GCMS. Through site-directed mutagenesis, it was confirmed that, conserved metal-bridged residue (Lys-127), plays a crucial role in OPs-degradation, which shows âˆ¼18-folds decline in OPs-degradation. Furthermore, the catalytic activity and its stability has been enhanced by >2.0-fold through biochemical optimization. Thus, the study suggests that ropdH has all the required properties for OPs bioremediation.


Assuntos
Arthrobacter , Praguicidas , Arthrobacter/genética , Arthrobacter/metabolismo , Compostos Organofosforados/metabolismo , Praguicidas/química , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Piperidinas
4.
3 Biotech ; 11(8): 378, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367870

RESUMO

The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.

5.
Bioresour Technol ; 306: 123149, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179401

RESUMO

In the present study, black liquor generated during mild alkali pre-treatment was evaluated as a moistening agent to produce cost effective hydrolytic enzymes using novel cellulo-xylano fungal strain Aspergillus tubingensis M7. The fungus competently produced 21.90 and 22.46 filter paper, 1004 and 1369 endoglucanase, 117 and 142 ß-glucosidase and 8188 and 7981 U/g xylanase activity by using modified Mandel & weber's and black liquor medium, respectively. The crude hydrolytic enzymes from black liquor were evaluated for saccharification of pre-treated biomass. Reducing sugar yields (mg/g substrate) and the corresponding saccharification efficiency (%) from rice straw, corncob, sugarcane bagasse and banana stem were 745.50 (86.02; 18 h); 596 (74.50; 24 h); 358.15 (42.98; 24 h) and 245.70 (33.00; 24 h), respectively. Residual biomass compositional analysis revealed that reduced onset temperature, increased activation energy and pre-exponential factor in saccharified biomass as compared to pre-treated and untreated biomass, suggesting their utilization for pyrolysis to obtain value added products.

6.
Int J Biol Macromol ; 144: 586-595, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830449

RESUMO

Laccase from previously reported hardwood degrading fungus, Tricholoma giganteum AGDR1, was isolated, identified at molecular level, biochemically characterized and also utilized for pesticide degradation. Laccase gene is comprised of 3752 bp, which encompassed 742-bp of 5' flanking upstream sequence with 12 introns and 12 exons. Mature enzyme possesses 391 amino acids and signal peptide, which is determined to be monomeric protein with an apparent molecular weight of 41 kDa and 6.45 pI. Higher optimal activities were observed at 45 °C and pH 3.0 and surprisingly, it exhibited more than 20% of relative activity at pH 1.5. Purified laccase was tolerant to 100 mM of metals (i.e. Se, Pb, Cu, Cr and Cd), organic solvents (ethyl acetate, methanol, ethanol and acetone) and potent inhibitors (hydroxylamine, thiourea, NaF and Na-azide) as compared to reported laccases. It was able to degrade 29%, 7% and 72% of chlorpyrifos, profenofos and thiophanate methyl within 15 h, respectively. Molecular docking analysis revealed that higher binding efficacy of these pesticides is observed with H83, H320, A95, V384, and P366 which are presented near to the catalytic site. Based on the results, T. giganteum AGDR1 laccase can be applied for the potential remediation and industrial applications under harsh conditions.


Assuntos
Proteínas Fúngicas/química , Lacase/química , Metais Pesados/química , Praguicidas/química , Solventes/química , Tricholoma/enzimologia , Inibidores Enzimáticos/química , Estabilidade Enzimática , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Hidrólise , Lacase/genética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tricholoma/genética
7.
Int J Biol Macromol ; 138: 1019-1028, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356936

RESUMO

Fungal ß-glucosidases (BGLs) have unceasingly utilized for industrial applications and recently, they possess a crucial role in bioethanol production. To engineer the BGLs, understanding their structures, intermolecular interactions and molecular docking is requisite, which is carried out in this work based on the glycosyl hydrolase (GH) family. Among 12 BGLs, protein sequence, structure, and conserved sites of GH1 BGLs are evidently diverged to GH3 BGLs. Even biophysical and chemical features of GH1 BGLs are utterly varied from GH3 BGLs, wherein pI, instability index, aliphatic index, surface & buried area, thermostability and thermodynamics are included. On the contrary, aromatic, charged, polar, and hydrophobic residues are significantly higher in GH1 BGLs as compared to that of GH3 BGLs. Moreover, molecular docking of BGLs with 12 substrates and 5 inhibitors revealed that the GH3 BGLs efficiently bound with laminaribose, gentibiose, aryl- and cello-substrates than GH1 BGLs; however, GH3 BGLs are noticeably inhibited by glucose, glucono-δ-lactone, methanetriamine. So, structural insight of BGLs provides an explicit knowledge regarding the catalytic residues, biophysical chemistry and notable binding ligands, which are most important factors for enzyme engineering.


Assuntos
Proteínas Fúngicas/química , Domínios e Motivos de Interação entre Proteínas , beta-Glucosidase/química , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica , beta-Glucosidase/genética
8.
J Microbiol Methods ; 157: 123-130, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30659858

RESUMO

Evaluating the biomass degradation using fast, validate and sensitive techniques for exploratory purposes of biofuel production has been developed since last decade. Thus, we assessed the degradation of two Indian hardwoods using FTIR and chemometric approaches. Two white rot fungi, namely Pseudolagarobasidium acaciicola AGST3 and Tricholoma giganteum AGDR1, were selected among twenty-one fungal isolates for higher hardwood degradation. In the screening, P. acaciicola AGST3 and T. giganteum AGDR1 depicted the dry woody mass loss of 20.51% and 22.38%, respectively. Cellulose crystallinity of P. acaciicola AGST3 treated hardwoods was 4-fold lower than untreated hardwoods, showing the higher cellulose degradation efficiency. P. acaciicola AGST3 treated samples exhibited maximum deviation of guaiacyl units of lignin, cellulose and hemicelluloses. T. giganteum AGDR1 treated hardwoods showed maximum deviation of guaiacyl- and syringyl- units of lignin and hemicelluloses. Multivariate approach revealed the degradation patterns and preferences are varied based on the fungi and hardwood. The approach used in the present study can certainly distinguish the variations among the different biomass samples that having similar composition. Additionally, higher lignin degradability of these fungi can be used in biomass pretreatment, which significantly utilized to produce second-generation biofuels.


Assuntos
Basidiomycota/classificação , Basidiomycota/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Madeira/microbiologia , Basidiomycota/isolamento & purificação , Biocombustíveis/microbiologia , Biomassa , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Biometals ; 31(1): 1-5, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29302860

RESUMO

Metal ions are known selective agents for antibiotic resistance and frequently accumulate in natural environments due to the anthropogenic activities. However, the action of metals that cause the antibiotic resistance is not known for all bacteria. The present work is aimed to investigate the co-selection of metals and antibiotic resistance in Comamonas acidovorans. Tolerance profile of 16 metals revealed that the strain could tolerate high concentrations of toxic metals i.e., Cr (710 ppm), As (380 ppm), Cd (320 ppm), Pb (305 ppm) and Hg (205 ppm). Additionally, metal tolerant phenotypes were subjected to antibiotic resistance profiling; wherein several metal tolerant phenotypes (Cr 1.35-fold; Co-1.33 fold; Mn-1.29 fold) were resistant, while other metal tolerant phenotypes (Mg 1.32-fold; Hg 1.29-fold; Cu 1.28-fold) were susceptible than control phenotype. Metal accumulation may alter the metabolism of C. acidovorans that activates or inactivates the genes responsible for antibiotic resistance, resulting in the resistance and/or susceptibility pattern observed in metal resistant phenotypes.


Assuntos
Arsênio/toxicidade , Cádmio/toxicidade , Cromo/toxicidade , Delftia acidovorans/efeitos dos fármacos , Chumbo/toxicidade , Mercúrio/toxicidade , Antibacterianos/farmacologia , Delftia acidovorans/crescimento & desenvolvimento , Delftia acidovorans/metabolismo , Interações Medicamentosas , Farmacorresistência Bacteriana , Tolerância a Medicamentos , Testes de Sensibilidade Microbiana , Estreptomicina/farmacologia , Tetraciclina/farmacologia , beta-Lactamas/farmacologia
10.
Glob Chall ; 2(12): 1800064, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31565319

RESUMO

Efficient degradation of hazardous contaminants from contaminated water is the major challenge for researchers, wherein heavy metals are the prominent contaminants. Consequently, the assessment of multimetal removal is necessary using efficient biosorbant. In this work, the capability of Phanerochaete chrysosporium is evaluated for the individual and simultaneous removal of heavy metals. Individual and simultaneous removal of As, Cd, and Cr is optimized using response surface methodology based on the central composite design by changing the variables, i.e., pH, fungal biomass, and metal concentration. Optimization of the individual metal removal study reveals that fungus effectively absorbs As (29.95 mg L-1), Cd (18.1 mg L-1), and Cr (26.34 mg L-1) at 6.1, 5.64, and 4.15 of pH, respectively. Similarly, As (14.18 mg L-1), Cd (4.53 mg L-1), and Cr (9.28 mg L-1) are absorbed by fungal hyphae simultaneously within 1 h. Changes in the morphology of fungal hyphae are detected in metal absorbed samples as compared to the control hyphae. Interaction of metal-absorbed fungal hyphae is analyzed using FTIR spectroscopy, revealing that the proteins, carbohydrates, and fatty acids present in the fungal cell are interacted with metals. The model white rot fungi used in the present study can be applied efficiently for the multimetal removal in effluent treatment plants.

11.
3 Biotech ; 7(2): 92, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28555428

RESUMO

The need to overcome human threats from pathogenic microbes, development of nanomaterials have been provoked for a new generation of antimicrobials. In the present study, biosynthesis of silver nanoparticles (AgNPs) was acquired using Comamonas acidovorans extract within 72 h under static condition. Electron microscopy studies revealed that the size of AgNPs was ranging from 6-53 nm and had spherical, oval and irregular shapes with smooth surfaces. Prepared AgNPs interacted with proteins, carbohydrates and other aromatic molecules. Biosynthesized AgNPs were bactericidal, which significantly inhibited pathogenic microbes, i.e., Streptococcus pyogenes, Staphylococcus aureus and Escherichia coli. Higher concentrations of AgNPs (20 µg ml-1) inhibited 92-98% growth of all tested bacteria within 24 h. AgNPs-protein network studies carried out to recognize the protein interactions with AgNPs and to understand probable bactericidal mechanisms. AgNPs may penetrate into cell through membrane proteins and damage them by modifying amino acids. Due to AgNPs-protein interactions, dysfunctions in enzymes obstruct certain metabolic processes, which cause the bacteria to die eventually. In certain pathogenic microbes, cue and cus systems detoxify Ag+ ions, transport through transporter proteins and expel them to the extracellular space, which are mainly responsible for Ag resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...